/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.util; /** * Performs spline interpolation given a set of control points. * @hide */ public abstract class Spline { /** * Interpolates the value of Y = f(X) for given X. * Clamps X to the domain of the spline. * * @param x The X value. * @return The interpolated Y = f(X) value. */ public abstract float interpolate(float x); /** * Creates an appropriate spline based on the properties of the control points. * * If the control points are monotonic then the resulting spline will preserve that and * otherwise optimize for error bounds. */ public static Spline createSpline(float[] x, float[] y) { if (!isStrictlyIncreasing(x)) { throw new IllegalArgumentException("The control points must all have strictly " + "increasing X values."); } if (isMonotonic(y)) { return createMonotoneCubicSpline(x, y); } else { return createLinearSpline(x, y); } } /** * Creates a monotone cubic spline from a given set of control points. * * The spline is guaranteed to pass through each control point exactly. * Moreover, assuming the control points are monotonic (Y is non-decreasing or * non-increasing) then the interpolated values will also be monotonic. * * This function uses the Fritsch-Carlson method for computing the spline parameters. * http://en.wikipedia.org/wiki/Monotone_cubic_interpolation * * @param x The X component of the control points, strictly increasing. * @param y The Y component of the control points, monotonic. * @return * * @throws IllegalArgumentException if the X or Y arrays are null, have * different lengths or have fewer than 2 values. * @throws IllegalArgumentException if the control points are not monotonic. */ public static Spline createMonotoneCubicSpline(float[] x, float[] y) { return new MonotoneCubicSpline(x, y); } /** * Creates a linear spline from a given set of control points. * * Like a monotone cubic spline, the interpolated curve will be monotonic if the control points * are monotonic. * * @param x The X component of the control points, strictly increasing. * @param y The Y component of the control points. * @return * * @throws IllegalArgumentException if the X or Y arrays are null, have * different lengths or have fewer than 2 values. * @throws IllegalArgumentException if the X components of the control points are not strictly * increasing. */ public static Spline createLinearSpline(float[] x, float[] y) { return new LinearSpline(x, y); } private static boolean isStrictlyIncreasing(float[] x) { if (x == null || x.length < 2) { throw new IllegalArgumentException("There must be at least two control points."); } float prev = x[0]; for (int i = 1; i < x.length; i++) { float curr = x[i]; if (curr <= prev) { return false; } prev = curr; } return true; } private static boolean isMonotonic(float[] x) { if (x == null || x.length < 2) { throw new IllegalArgumentException("There must be at least two control points."); } float prev = x[0]; for (int i = 1; i < x.length; i++) { float curr = x[i]; if (curr < prev) { return false; } prev = curr; } return true; } public static class MonotoneCubicSpline extends Spline { private float[] mX; private float[] mY; private float[] mM; public MonotoneCubicSpline(float[] x, float[] y) { if (x == null || y == null || x.length != y.length || x.length < 2) { throw new IllegalArgumentException("There must be at least two control " + "points and the arrays must be of equal length."); } final int n = x.length; float[] d = new float[n - 1]; // could optimize this out float[] m = new float[n]; // Compute slopes of secant lines between successive points. for (int i = 0; i < n - 1; i++) { float h = x[i + 1] - x[i]; if (h <= 0f) { throw new IllegalArgumentException("The control points must all " + "have strictly increasing X values."); } d[i] = (y[i + 1] - y[i]) / h; } // Initialize the tangents as the average of the secants. m[0] = d[0]; for (int i = 1; i < n - 1; i++) { m[i] = (d[i - 1] + d[i]) * 0.5f; } m[n - 1] = d[n - 2]; // Update the tangents to preserve monotonicity. for (int i = 0; i < n - 1; i++) { if (d[i] == 0f) { // successive Y values are equal m[i] = 0f; m[i + 1] = 0f; } else { float a = m[i] / d[i]; float b = m[i + 1] / d[i]; if (a < 0f || b < 0f) { throw new IllegalArgumentException("The control points must have " + "monotonic Y values."); } float h = FloatMath.hypot(a, b); if (h > 9f) { float t = 3f / h; m[i] = t * a * d[i]; m[i + 1] = t * b * d[i]; } } } mX = x; mY = y; mM = m; } @Override public float interpolate(float x) { // Handle the boundary cases. final int n = mX.length; if (Float.isNaN(x)) { return x; } if (x <= mX[0]) { return mY[0]; } if (x >= mX[n - 1]) { return mY[n - 1]; } // Find the index 'i' of the last point with smaller X. // We know this will be within the spline due to the boundary tests. int i = 0; while (x >= mX[i + 1]) { i += 1; if (x == mX[i]) { return mY[i]; } } // Perform cubic Hermite spline interpolation. float h = mX[i + 1] - mX[i]; float t = (x - mX[i]) / h; return (mY[i] * (1 + 2 * t) + h * mM[i] * t) * (1 - t) * (1 - t) + (mY[i + 1] * (3 - 2 * t) + h * mM[i + 1] * (t - 1)) * t * t; } // For debugging. @Override public String toString() { StringBuilder str = new StringBuilder(); final int n = mX.length; str.append("MonotoneCubicSpline{["); for (int i = 0; i < n; i++) { if (i != 0) { str.append(", "); } str.append("(").append(mX[i]); str.append(", ").append(mY[i]); str.append(": ").append(mM[i]).append(")"); } str.append("]}"); return str.toString(); } } public static class LinearSpline extends Spline { private final float[] mX; private final float[] mY; private final float[] mM; public LinearSpline(float[] x, float[] y) { if (x == null || y == null || x.length != y.length || x.length < 2) { throw new IllegalArgumentException("There must be at least two control " + "points and the arrays must be of equal length."); } final int N = x.length; mM = new float[N-1]; for (int i = 0; i < N-1; i++) { mM[i] = (y[i+1] - y[i]) / (x[i+1] - x[i]); } mX = x; mY = y; } @Override public float interpolate(float x) { // Handle the boundary cases. final int n = mX.length; if (Float.isNaN(x)) { return x; } if (x <= mX[0]) { return mY[0]; } if (x >= mX[n - 1]) { return mY[n - 1]; } // Find the index 'i' of the last point with smaller X. // We know this will be within the spline due to the boundary tests. int i = 0; while (x >= mX[i + 1]) { i += 1; if (x == mX[i]) { return mY[i]; } } return mY[i] + mM[i] * (x - mX[i]); } @Override public String toString() { StringBuilder str = new StringBuilder(); final int n = mX.length; str.append("LinearSpline{["); for (int i = 0; i < n; i++) { if (i != 0) { str.append(", "); } str.append("(").append(mX[i]); str.append(", ").append(mY[i]); if (i < n-1) { str.append(": ").append(mM[i]); } str.append(")"); } str.append("]}"); return str.toString(); } } }